How wrong are we? Using middle initials to estimate mismatch rates and reduce bias in regression coefficeints

Joshua R. Goldstein
BPC Mini-Conference

February 10, 2020

Known Unknowns

We can tolerate false matches, if we know how often we are are wrong.

Our Case: exact matching in CenSoc project

- We match 1940 census to Social Security Death File deaths 1975-2004
- Exact, unique, matches on first name, last name, year of birth, (place of birth)
- Because we don't use middle name, can use to check false match rate

A self-centered example

Joshua [R.] Goldstein
Josh [A.] Goldstein

Joshua [A.] Goldstein Josh [R.] Goldstein

Patterns: Education

Match rates by educyr

Patterns: Region

Match rates by region

			0	
West North Central Division		0		
Pacific Division		0		
East North Central Division		0		
Mountain Division		0		
Middle Atlantic Division		0		
New England Division		0		
West South Central Divislon				
South Atlantic Divislon		0.8	0.9	1.0

Patterns: Income

Match rates by incwage

Patterns: Race

Match rates by race

Chinese

Japanese

American Indlan/Alaska Natlve

Black/Negro

White

Take-away: Big Black-White Disparity

- Not sure why
- Regression analysis suggests it's not due to name frequencies
- Unstable reporting over time? (Name, birthyear?)
- Enumerator issues?

An Application

A regression of age at death on education

$$
Y_{i}=\beta_{0}+\beta_{E D} E D_{i}+\epsilon_{i}
$$

But what if we have wrong person's education?
Can model as measurement error:

$$
E D_{j}=E D_{i}+u_{i}
$$

Can "unbias" the coefficients by dividing them by proportion "true matches"
The formula turns out to be

$$
\hat{\beta}_{\text {true }}=\beta_{\text {bias }} \times \frac{1}{1-\alpha_{\text {mismatch rate }}}
$$

Black-White differences in the effect of education

White Black
$\beta_{\text {bias }} \quad 0.140 \quad 0.055$

Black-White differences in the effect of education

$$
\begin{array}{rrr}
& \text { White } & \text { Black } \\
\beta_{\text {bias }} & 0.140 & 0.055 \\
\hat{\alpha}_{j} & 0.150 & 0.350
\end{array}
$$

Black-White differences in the effect of education

	White	Black
$\beta_{\text {bias }}$	0.140	0.055
$\hat{\alpha}_{j}$	0.150	0.350
$\hat{\beta}_{\text {true }}$	0.165	0.085

Black-White differences in the effect of education

	White	Black
$\beta_{\text {bias }}$	0.140	0.055
$\hat{\alpha}_{j}$	0.150	0.350
$\hat{\beta}_{\text {true }}$	0.165	0.085

- So, difference appears not due to measurement error.
- "Real" explanations required to understand why education has smaller pay-off for Blacks than whites (e.g., lower quality schooling)

Conclusions

- Trade-offs: effort vs. sample bias vs. false-match rate, ...
- Perhaps false-matches not such a problem, if we can get good estimates of how often they occur.

